
Software Architecture With ColdFusion:
Design Patterns and Beyond
Topics Outline Prepared by Simon Horwith for CFUnderground 6

Some Terms:

Architecture – the manner in which the components of a computer or computer
system are organized and integrated (Webster)

OOP – Object Oriented Programming: representing the parts of an application as
Objects that interact with each other. Objects typically represent real world entities.
OOP languages typically support Classes, Objects, Messages, Inheritance, and
Polymorphism.

UML – Unified Modeling Language: an industry standard vocabulary for defining
software structure. There are many types of UML diagrams: use case, class,
collaboration, sequence, activity, deployment, and more.

Design Pattern – A recurring solution to a recurring problem

Anti-Pattern – Recurring mistake made in software designs

Aspect Oriented Programming (AOP) – Software components represent
“crosscutting concerns” which are then “woven” – it is the next generation school of
thought for software development.

Notes on Terms:

Some Topics:

An application has many tiers. Typical tiers are:

• Client-side presentation - presents UI to user
• Server-side presentation – feeds data to client-side presentation tier
• Server-side Business Logic – perform actions
• Server-side domain model – the entities
• Integration Tier – talks to other systems

Why Patterns?
Design patterns define ways to represent components in a system. Breaking a
component into several smaller components, which are broken into several smaller
components, etc. – becoming more specialized as they become smaller. This allows
changes in one component to not effect other components and allows components to
be reused more easily. This is commonly known as encapsulation and loose coupling.

What makes an application a good one?
There are four categories by which we measure success as developers:

• Scalability – how well does an application perform as load (requests) is
increased?

• Reliability – does the application behave as expected all of the time?
• Extensibility - how easily are changes accommodated?
• Timeliness – is the application delivered in a reasonable amount of time?

OOP and patterns helps with all of these things… largely by use of centralized,
decoupled, reusable functionality and components.

What entities do we commonly have to consider?
CFM pages
Custom Tags
CFCs
Database
File System
RIA Interfaces
External Applications
Other technologies

Additional Notes:

Design Patterns

There are thousands of design patterns and dozens of ways to categorize them all.
Common general categories are Presentation Tier, Business Tier, Messaging, and
Anti-Patterns. I like to also categorize them as: Factory, Delegate, Hub, Façade,
Filter, and Controller… because many patterns are based on these concepts.
Always remember: there are many patterns that solve a problem – which is best
depends on requirements and how you define success. Also remember that not all
patterns are applicable (relevant) in CFML development, though the majority are.

Pattern Purpose Description
Model-View-
Controller (MVC)

Separate
presentation tier into
separate components

Controller receives
and processes user
input, updates
Model, and selects
view. View
presents UI and
uses Model data.
Model stores data
and performs
business logic.

Front Controller A single central
component performs
common functions

Front controller
receives all
requests and
performs common
functions like
logging, passes
data to page
(request) controller
which talks with
Model. Page
controller then
selects a View.

Decorator Allows functionality
to be dynamically
added to a Front
Controller.

Decorator object is
a configurable
filter that
intercepts requests
and hands control
and data (including
a chain definition)
to first decorator.
That decorator
hands control to
next decorator in
the chain, etc.

Composite Entity Efficiently represent
Domain Model
Entities by
aggregating data

Model is broken
into many small
objects in the back,
aggregated data is

from many smaller
objects.

presented to the
View.

Domain Object
Model

Use objects to
represent the
business
logic/application
concepts

Objects in Model
are connected to
each other in ways
that represent
business
relationships.

Data Transfer
Objects (DTO)

Improve
performance by
reducing the number
of objects passed
between application
tiers

Smaller data
container objects
are passed from the
business tier to the
view.

Data Transfer
Hash

Improve
performance by
reducing the number
of objects passed
between application
tiers

Structures (Hash
variables) are
passed from the
business tier to the
view

Row Set DTO Improve
performance by
returning recordset
data to the
presentation tier.

Queries are
returned directly to
the presentation
tier for use rather
than returning
Objects.

Data Access
Object (DAO)

Separate persistence
from code that
processes data

Business object or
Presentation tier
Object has a DAO
that it uses to
access and update
data. DAO talks
with persistence
layer via other data
objects.

DAO Factory Hide DAO
creation/selection
from
presentation/business
tiers.

Business or
presentation tier
object requests a
DAO from a
factory. Factory
decides how to
create the DAO

isDirty Prevent unnecessary
writing to the
database

DAO tracks
whether or not data
has changed and
when passed to
Model, the Model
determines
whether or not to
write to the

database.
Lazy Load Avoid unnecessary

database access
Client requests
data from object,
object calls DAO
methods just to get
that data – no extra
data ever returned.

Procedure Access
Object (PAO)

Leverage Stored
Procedures

Properties are set
on the PAO,
execute() method
then passes those
properties to a
stored procedure
which then sends
new values back (if
appropriate) to the
PAO

Service to Worker
(Dispatcher)

Decouple navigation
from Front
Controller

Front Controller
gets request,
performs common
functions, then
passes request to
dispatcher object.
Dispatcher
determines what
actions to perform
and uses it’s
internal Model for
persistence and
logic. Dispatcher
chooses view and
uses it’s Model to
populate it.

Composite View Build a view from
several sub-views

Dispatcher builds
structure of “leaf
views” then
forwards request to
a composite view
which replaces
generic leaf view
names with actual
views.

View Helper Avoid over
specialized views

View uses view
helper objects to
translate Model
data into more
usable data model.
Either view or
helper transforms
that data into

something useful
(HTML, XML, etc.

Asynchronous
Page

Cache remote data
efficiently

Subscriber object
retrieves data from
publisher when it’s
changed or at
intervals.
Subscriber
transfers that data
to the Model. View
reads from the
Model

Caching Filter Minimize page
generation

Cache filter
intercepts requests
and determines
whether or not to
return a cached
version.

Resource pool Decrease repetition
of object
instantiations

All objects
requested from a
pool. New instance
is created and
returned if
necessary,
otherwise an
available object is
returned (and
locked until
released).

Serializable Entity Persist objects to
database

Data passed to a
DAO – the DAO
serializes the
object data as
binary stream and
stores it in the
database

Table Inheritance Offer simple
mapping between
database and objects

Every object has a
corresponding
database table.

Tuple Table Store objects in a
database so that
they’re readable and
extensible

Tuple table DAO
stores data
properties as
name/vale pairs in
database – one row
per pair.

Business Delegate Encapsulate how to
locate, connect to,
and interact with
business objects in
the presentation tier

Methods of
business delegate
are called –
delegate locates
and connects with

appropriate
service. Business
delegate
manipulates return
values and returns
them to the client

Business Delegate
Factory

Simplify use of
business delegates

Factory controls
what business
delegate handles
request – creates
new ones as
needed.

Service Adaptor Simplify working
with foreign data
formats

Service adaptor
connects with
remote resources
and formats return
data in easy to use
native format.

Session Facade Increase
performance by
presenting remote
business objects in
an optimal way

Request goes to the
remote façade,
façade works with
local objects and
returns data

ACID Transaction Perform actions on
resources while
ensuring they stay in
proper state

All business and
data access logic
routes through
transaction
manager – it is a
gateway to
persistence that
ensures permanent
data changes are
Atomic (single
action), Consistent
(with business
rules), Isolated
(don’t interfere),
and Durable
(committed)

Lockable Object Implement simple
locking in shared
resource

Before any data
modification can
occur, object’s
lock() method is
called. Lock is
released when
actions complete.

Lock Manager Create central point
for managing locks

DAO and
delegates request a
lock on a resource
from a manager.

Manager accepts a
primary key and/or
identifier.

Version Number Provide simple way
to track when an
object changes

Objects have a
version number
which is
incremented when
properties change.
Other objects use
this to deal with
concurrency

Content
Aggregator

Allow single handler
to process data that
is similar but in a
variety of formats

Content aggregator
receives data in
any one of a
number of formats
and formats it one
way before passing
it along.

Anti-Patterns
Excessive
Layering

Unnecessary layers
make application
inefficient.

Leak Collection Objects, locks, and
other resources
aren’t properly
released

Overstuffed
Scopes

Objects with too
short or too long life
spans are stored in
the wrong memory
scope

Magic Template CFM or Custom Tag
does all the work of
Model, View, and
Controller

Everything is a
CFC

CFCs are great and
everything – but too
many of them is
overkill

Notes on Patterns and Anti-Patterns:

